gauss_convolution_quad module#

Created on Mon Jul 22 15:26:31 2024

@author: Pavan Pranjivan Mehta

class gauss_convolution_quad.quad_pts_weights#

Bases: object

Computes Quadrature Points and weights for convolution operator, with singularity too.

It uses Newton-Cotes formula for compute the weights.

singular_jacobi_normalised(alpha=0)#

Computes the quadauture weights (and points) for convolution with normalised power-law singularity and an analtyic function,

frac{1}{Gamma (alpha +1)} int_{0}^{1} (1 - x)^{alpha} f(x) dx = sum_{i=0}^{n} w_i f(q_i),

where, |\alpha| < 1, and f is 2n-th degree polynomial.

Parameters#

degreeint

max degree of polyomial

alphafloat

|\alpha| < 1. The default is 0.

Returns#

qfloat, array

quadrutre points

wfloat, array

weights.

singular_jacobi(alpha=0)#

Computes the quadauture weights (and points) for convolution with power-law singularity and an analtyic function,

int_{0}^{1} (1 - x)^{alpha} f(x) dx = sum_{i=0}^{n} w_i f(q_i),

where, |\alpha| < 1, and f is 2n-th degree polynomial.

Parameters#

degreeint

max degree of polyomial

alphafloat

|\alpha| < 1. The default is 0.

Returns#

qfloat, array

quadrutre points

wfloat, array

weights.

singular_jacobi_arbitary(degree, alpha=0)#

Computes the quadauture weights (and points) for convolution with power-law singularity and an analtyic function, over the arbitray interval, [0, x], x in (0, 1]

int_{0}^{x} (x - s)^{alpha} f(s) dx = sum_{i=0}^{n} w_i f(q_i),

where, |\alpha| < 1, and f is 2n-th degree polynomial.

Parameters#

xfloat

upper limit of integral over the domian [0, x], x in (0, 1]

degreeint

max degree of polyomial

alphafloat

|\alpha| < 1. The default is 0.

Returns#

qfloat, array

quadrutre points

wfloat, array

weights.

Reference#

function call to ‘singular_jacobi_normalised’

singular_jacobi_normalised_arbitary(degree, alpha=0)#

Computes the quadauture weights (and points) for convolution with normailised power-law singularity and an analtyic function, over the arbitray interval, [0, x], x in (0, 1]

frac{1} {Gamma(1 + alpha)} int_{0}^{x} (x - s)^{alpha} f(s) dx = sum_{i=0}^{n} w_i f(q_i),

where, |\alpha| < 1, and f is 2n-th degree polynomial.

Parameters#

xfloat

upper limit of integral over the domian [0, x], x in (0, 1]

degreeint

max degree of polyomial

alphafloat

|\alpha| < 1. The default is 0.

Returns#

qfloat, array

quadrutre points

wfloat, array

weights.

Reference#

function call to ‘singular_jacobi’

class gauss_convolution_quad.test#

Bases: object

gauss_con_jacobi_interp(alpha, n)#
gauss_con_jacobi_arb(alpha, n)#
gauss_con_jacobi_arb_norm(alpha, n)#
example(alpha, n)#