gauss_convolution_quad module#
Created on Mon Jul 22 15:26:31 2024
@author: Pavan Pranjivan Mehta
- class gauss_convolution_quad.quad_pts_weights#
- Bases: - object- Computes Quadrature Points and weights for convolution operator, with singularity too. - It uses Newton-Cotes formula for compute the weights. - singular_jacobi_normalised(alpha=0)#
- Computes the quadauture weights (and points) for convolution with normalised power-law singularity and an analtyic function, - frac{1}{Gamma (alpha +1)} int_{0}^{1} (1 - x)^{alpha} f(x) dx = sum_{i=0}^{n} w_i f(q_i), - where, |\alpha| < 1, and f is 2n-th degree polynomial. - Parameters#- degreeint
- max degree of polyomial 
- alphafloat
- |\alpha| < 1. The default is 0. 
 - Returns#- qfloat, array
- quadrutre points 
- wfloat, array
- weights. 
 
 - singular_jacobi(alpha=0)#
- Computes the quadauture weights (and points) for convolution with power-law singularity and an analtyic function, - int_{0}^{1} (1 - x)^{alpha} f(x) dx = sum_{i=0}^{n} w_i f(q_i), - where, |\alpha| < 1, and f is 2n-th degree polynomial. - Parameters#- degreeint
- max degree of polyomial 
- alphafloat
- |\alpha| < 1. The default is 0. 
 - Returns#- qfloat, array
- quadrutre points 
- wfloat, array
- weights. 
 
 - singular_jacobi_arbitary(degree, alpha=0)#
- Computes the quadauture weights (and points) for convolution with power-law singularity and an analtyic function, over the arbitray interval, [0, x], x in (0, 1] - int_{0}^{x} (x - s)^{alpha} f(s) dx = sum_{i=0}^{n} w_i f(q_i), - where, |\alpha| < 1, and f is 2n-th degree polynomial. - Parameters#- xfloat
- upper limit of integral over the domian [0, x], x in (0, 1] 
- degreeint
- max degree of polyomial 
- alphafloat
- |\alpha| < 1. The default is 0. 
 - Returns#- qfloat, array
- quadrutre points 
- wfloat, array
- weights. 
 - Reference#- function call to ‘singular_jacobi_normalised’ 
 - singular_jacobi_normalised_arbitary(degree, alpha=0)#
- Computes the quadauture weights (and points) for convolution with normailised power-law singularity and an analtyic function, over the arbitray interval, [0, x], x in (0, 1] - frac{1} {Gamma(1 + alpha)} int_{0}^{x} (x - s)^{alpha} f(s) dx = sum_{i=0}^{n} w_i f(q_i), - where, |\alpha| < 1, and f is 2n-th degree polynomial. - Parameters#- xfloat
- upper limit of integral over the domian [0, x], x in (0, 1] 
- degreeint
- max degree of polyomial 
- alphafloat
- |\alpha| < 1. The default is 0. 
 - Returns#- qfloat, array
- quadrutre points 
- wfloat, array
- weights. 
 - Reference#- function call to ‘singular_jacobi’