allen_cahn_1D module#
Created on Fri Sep 1 19:12:28 2023
@author: Pavan Pranjivan Mehta
- allen_cahn_1D.eval_A(epi, M, K, dt)#
- Computes A = M + dt * episilon * episilon * K - Parameters#- Nint
- max degree of the polynomial 
- Knumpy araray
- Stiffness matrix of dim = (N x N) 
- Mnumpy araray
- Mass matrix of dim = (N x N) 
- dtfloat
- time step 
- epifloat
- diffusion constant, episilon 
 - Returns#- A = M + dt * episilon * episilon * K - A: numpy array float, dim = (N x N)
- A = M + dt * episilon * episilon * K 
 
- allen_cahn_1D.eval_b(coeff_old, N, M, dt)#
- Computes b = M [ eta_coeff - f_prime (eta_coeff) ] - Parameters#- Nint
- max degree of the polynomial 
- coeff_oldnumpy araray
- coeffecients of eta at time-step k obtained as reuslt of L2 Projection 
- Mnumpy araray
- Mass matrix of dim = (N x N) 
- dtfloat
- time step 
 - Returns#- b = M [ eta_coeff - f_prime (eta_coeff) ] - b: numpy array float, dim = (N)
- b = M [ eta_coeff - f_prime (eta_coeff) ] 
 - Notes#- f = eta**2 ( eta - 1 )**2 f_prime = 4 eta**3 - 6 eta**2 + 2 eta 
- allen_cahn_1D.initial_value(x)#
- Computes Initial value - Parameters#- xfloat or numpy array
- spatial points in [0, 1] 
 - Returns#- Initial value: numpy array - Notes#- Available functions: random, sin (x * pi) and runge in [0, 1] 
- allen_cahn_1D.function_projection(N, M)#
- Computes Coeffcients from L2 of Initial value - Parameters#- Nint
- max degree of the polynomial 
- Mnumpy araray
- Mass matrix of dim = (N x N) 
 - Returns#- Coeffcients: numpy array
- Coeffcients from L2 projection of initial value basis = homogenous basis using shifted legendre polynomials 
 
- allen_cahn_1D.construct_sol(coeff, x, N)#
- Constructs function value, f(x) as; - f(x) = coeff_0 * P_0 + coeff_1 * P_1 + coeff_3 * P_2 + … - where, P_n is basis function of n-th degree - Parameters#- Nint
- max degreo of the polynomial 
- coeffnumpy araray
- coeffecients of eta obtained as reuslt of L2 Projection 
- xfloat or numpy array
- spatial points in [0, 1] 
 - Returns#- f(x): numpy array
- function value upon expansion over basis basis = homogenous basis using shifted legendre polynomials 
 
- allen_cahn_1D.solver(N)#
- Solve Allen-Cahn eqaution in 1D - Parameters#- Nint
- max degree of the polynomial 
 - Returns#- None 
place holder, see 2D for example