Homogeneous basis for Fractional Derivative using inner product#
Created on Fri Sep 6 12:52:35 2024
@author: ppranjiv
- frac_der_inner_homogen_bc.gm(x)#
- Petrov-Galerkin methods for fractional derivative,
- exmaple Power function : x^k1 - x^k2. Since the function is homogenous, we use Sifted Homogeneuos Legendre Basis, where, - Trial function : phi_n = kappa * (L_n+2 - L_n ), Test function : (L_n+2 - L_n ); - where L_n is nth order legendre polynomial and Kappa is a sonine kernel, assocaited with integral - in this case fractional - Note : Innner product is used, instead of outer convolution orthogonality. - To fix : Jacobi Quadture weights and quad points. 
 
- frac_der_inner_homogen_bc.exp(x, a1, degree, alpha)#
- Reconsturct the function f (x) = SUM_n a_n P_n, - where,
- P_n is shifted Legendre polynomails over the interval [0,1] and, a_n are the coeffcients. 
 - Parameters#- xarray
- x in [0, 1] 
- a1array
- coeffiencts for Galerkin projection 
- degreeint
- max. degree for the polynomial 
 - Returns#- fxarray
- function values at x in [0,1] 
 
- frac_der_inner_homogen_bc.func1(x, k1, k2)#
- Test function - Parameters#- xarray
- x in [0, 1] 
 - k1 : int - k2 : int - Returns#- fxarray
- function values at x in [0,1] 
 
- frac_der_inner_homogen_bc.rhs_inner(degree, k1, k2, alpha)#
- Computes the inner porduct from [0,1] of - rhs = g * P_n,
- where,
- P_n is shifted homogenehous Legendre polynomial and f is the function 
 
 - Parameters#- degreeint
- degree for the polynomial 
 - k1 : int - k2 : int - alpha : float - Returns#- rhsfloat
- inner porduct in [0,1] 
 
- frac_der_inner_homogen_bc.main(degree, k1, k2, alpha)#
- frac_der_inner_homogen_bc.plot_err(degree, k1, k2, alpha)#