Fractional Derivative using Convolution Orthogonality over Homogeneous Basis#
Created on Mon Sep 2 08:51:44 2024
@author: ppranjiv
- frac_differ_conv_homogeneous.gm(x)#
- Convolution Spectral methods for fractional derivative,
- exmaple Power function : x^k1 - x^k2. Since the function is homogenous, we use Sifted Homogeneuos Legendre Basis, where, - Trial function : phi_n = kappa * (L_n+2 - L_n ), Test function : (L_n+2 - L_n ); - where L_n is nth order legendre polynomial and Kappa is a sonine kernel, assocaited with integral - in this case fractional - Note : Outer convolution orthogonality is used, instead of inner product. - To fix : Jacobi Quadture weights and quad points. 
 
- frac_differ_conv_homogeneous.exp(x, a1, degree, alpha)#
- Reconsturct the function f (x) = SUM_n a_n P_n, - where,
- P_n is shifted Legendre polynomails over the interval [0,1] and, a_n are the coeffcients. 
 - Parameters#- xarray
- x in [0, 1] 
- a1array
- coeffiencts for Galerkin projection 
- degreeint
- max. degree for the polynomial 
 - Returns#- fxarray
- function values at x in [0,1] 
 
- frac_differ_conv_homogeneous.func1(x, k1, k2)#
- Test function - Parameters#- xarray
- x in [0, 1] 
 - k1 : int - k2 : int - Returns#- fxarray
- function values at x in [0,1] 
 
- frac_differ_conv_homogeneous.rhs_conv(degree, k1, k2, alpha)#
- Computes the outer-convolution from [0,1] of - rhs = g * P_n,
- where,
- P_n is shifted homogenehous Legendre polynomial and f is the function 
 
 - Parameters#- degreeint
- degree for the polynomial 
 - k1 : int - k2 : int - alpha : float - Returns#- rhsfloat
- convolution in [0,1] 
 
- frac_differ_conv_homogeneous.main(degree, k1, k2, alpha)#
- frac_differ_conv_homogeneous.plot_err(degree, k1, k2, alpha)#