Function approximation using Convolution Orthogonality#

Created on Tue Aug 27 08:33:23 2024

@author: ppranjiv

func_apprx_conv.legen_scaled(x, degree)#
func_apprx_conv.mass(degree)#

Compute the Mass matirx

Parameters#

degreeint

max. degree for the polynomial

Returns#

Marray

Mass matrix of shape (degree x degree)

func_apprx_conv.exp(x, a1, degree)#

Reconsturct the function f (x) = SUM_n a_n P_n,

where,

P_n is shifted Legendre polynomails over the interval [0,1] and, a_n are the coeffcients.

Parameters#

xarray

x in [0, 1]

a1array

coeffiencts for Galerkin projection

degreeint

max. degree for the polynomial

Returns#

fxarray

function values at x in [0,1]

func_apprx_conv.func1(x)#

Test function

Parameters#

xarray

x in [0, 1]

Returns#

fxarray

function values at x in [0,1]

func_apprx_conv.conv_f_Q(degree)#

Computes the outer-convolution from [0,1] of

g1 = f * P_n,
where,

P_n is shifted Legendre polynomial and f is the function

Parameters#

degreeint

degree for the polynomial

Returns#

g1float

convolution in [0,1]

func_apprx_conv.main(degree)#