Function approximation using Convolution Orthogonality#
Created on Tue Aug 27 08:33:23 2024
@author: ppranjiv
- func_apprx_conv.legen_scaled(x, degree)#
- func_apprx_conv.mass(degree)#
- Compute the Mass matirx - Parameters#- degreeint
- max. degree for the polynomial 
 - Returns#- Marray
- Mass matrix of shape (degree x degree) 
 
- func_apprx_conv.exp(x, a1, degree)#
- Reconsturct the function f (x) = SUM_n a_n P_n, - where,
- P_n is shifted Legendre polynomails over the interval [0,1] and, a_n are the coeffcients. 
 - Parameters#- xarray
- x in [0, 1] 
- a1array
- coeffiencts for Galerkin projection 
- degreeint
- max. degree for the polynomial 
 - Returns#- fxarray
- function values at x in [0,1] 
 
- func_apprx_conv.func1(x)#
- Test function - Parameters#- xarray
- x in [0, 1] 
 - Returns#- fxarray
- function values at x in [0,1] 
 
- func_apprx_conv.conv_f_Q(degree)#
- Computes the outer-convolution from [0,1] of - g1 = f * P_n,
- where,
- P_n is shifted Legendre polynomial and f is the function 
 
 - Parameters#- degreeint
- degree for the polynomial 
 - Returns#- g1float
- convolution in [0,1] 
 
- func_apprx_conv.main(degree)#