convolution module#

class convolution.convolution#

Bases: object

Computes left or right convolution operator of two functions, with singularity too.

left_convolue_at_x(fq, gq, degree, alpha=0)#

Computes the left convolution at x1, defined as, h(x) := int_{0}^{x1} (x1-t)^alpha f(x1-t) g(t) dt.

Parameters#

x1float

upper terminal of the integral from 0 to x1, x1 in [0,1].

fqarray,float

values of the function f at quadtaure points.

gqarray,float

values of the function g at quadtaure points.

alphafloat

corresponding to singulairty, which also a paramter of Jacobi polynomial, alpha > -1

degreeint

degree of Jacobi polynomial

Returns#

hx: float

Value of left convolution performed from 0 to x1.

Note#

x1 in [0,1], where x1 is the upper terminal of the integral defined as,

h(x1) := int_{0}^{x1} (x1-t)^alpha f(x1-t) g(t) dt.

right_convolue_at_x(fq, gq, degree, beta=0)#

Computes the right convolution at x1, defined as, h(x) := int_{x1}^{1} (t-x1)^alpha f(t-x1) g(t) dt.

Parameters#

x1float

lower terminal of the integral from x1 to 1, x1 in [0,1].

fqarray,float

values of the function f at quadtaure points.

gqarray,float

values of the function g at quadtaure points.

betafloat

corresponding to singulairty, which also a paramter of Jacobi polynomial, beta > -1

degreeint

degree of Jacobi polynomial

Returns#

hx: float

Value of left convolution performed from 0 to x1.

Note#

x1 in [0,1], where x1 is the lower terminal of the integral defined as,

h(x1) := int_{x1}^{1} (t-x1)^alpha f(t-x1) g(t) dt.

left_convolue(fq, gq, degree, alpha=0)#

Computes the left convolution at x1, defined as, h(x1) := int_{0}^{x1} (x1-t)^alpha f(x1-t) g(t) dt; for every x1 in x.

Parameters#

xfloat, array

A 1D array of points, as upper terminal of the integral from 0 to x, x in [0,1]. Note, the convolution is compted at supplied x

fqarray,float

values of the function f at quadtaure points in the invertal [0, b], 0 < b <= 1

gqarray,float

values of the function g at quadtaure points in the invertal [0, b], 0 < b <= 1

alphafloat

corresponding to singulairty, which also a paramter of Jacobi polynomial, alpha > -1

degreeint

degree of Jacobi polynomial

Returns#

V: array, float

Value of left convolution performed from 0 to x1, for every x1 in x.

class convolution.test#

Bases: object

fn(k1, beta, degree)#
gn(k2, beta, degree)#
fn_rt(k1, beta, degree)#
gn_rt(k2, beta, degree)#
therortical(k1, k2, beta, n)#
right_th(k2, beta, n)#
con_proj(k1, k2, beta, n)#
left_conv(k1, k2, beta, n)#
con_proj_rt(k2, beta, n)#