convolution module#
- class convolution.convolution#
Bases:
object
Computes left or right convolution operator of two functions, with singularity too.
- left_convolue_at_x(fq, gq, degree, alpha=0)#
Computes the left convolution at x1, defined as, h(x) := int_{0}^{x1} (x1-t)^alpha f(x1-t) g(t) dt.
Parameters#
- x1float
upper terminal of the integral from 0 to x1, x1 in [0,1].
- fqarray,float
values of the function f at quadtaure points.
- gqarray,float
values of the function g at quadtaure points.
- alphafloat
corresponding to singulairty, which also a paramter of Jacobi polynomial, alpha > -1
- degreeint
degree of Jacobi polynomial
Returns#
- hx: float
Value of left convolution performed from 0 to x1.
Note#
x1 in [0,1], where x1 is the upper terminal of the integral defined as,
h(x1) := int_{0}^{x1} (x1-t)^alpha f(x1-t) g(t) dt.
- right_convolue_at_x(fq, gq, degree, beta=0)#
Computes the right convolution at x1, defined as, h(x) := int_{x1}^{1} (t-x1)^alpha f(t-x1) g(t) dt.
Parameters#
- x1float
lower terminal of the integral from x1 to 1, x1 in [0,1].
- fqarray,float
values of the function f at quadtaure points.
- gqarray,float
values of the function g at quadtaure points.
- betafloat
corresponding to singulairty, which also a paramter of Jacobi polynomial, beta > -1
- degreeint
degree of Jacobi polynomial
Returns#
- hx: float
Value of left convolution performed from 0 to x1.
Note#
x1 in [0,1], where x1 is the lower terminal of the integral defined as,
h(x1) := int_{x1}^{1} (t-x1)^alpha f(t-x1) g(t) dt.
- left_convolue(fq, gq, degree, alpha=0)#
Computes the left convolution at x1, defined as, h(x1) := int_{0}^{x1} (x1-t)^alpha f(x1-t) g(t) dt; for every x1 in x.
Parameters#
- xfloat, array
A 1D array of points, as upper terminal of the integral from 0 to x, x in [0,1]. Note, the convolution is compted at supplied x
- fqarray,float
values of the function f at quadtaure points in the invertal [0, b], 0 < b <= 1
- gqarray,float
values of the function g at quadtaure points in the invertal [0, b], 0 < b <= 1
- alphafloat
corresponding to singulairty, which also a paramter of Jacobi polynomial, alpha > -1
- degreeint
degree of Jacobi polynomial
Returns#
- V: array, float
Value of left convolution performed from 0 to x1, for every x1 in x.