convolution module#
- class convolution.convolution#
- Bases: - object- Computes left or right convolution operator of two functions, with singularity too. - left_convolue_at_x(fq, gq, degree, alpha=0)#
- Computes the left convolution at x1, defined as, h(x) := int_{0}^{x1} (x1-t)^alpha f(x1-t) g(t) dt. - Parameters#- x1float
- upper terminal of the integral from 0 to x1, x1 in [0,1]. 
- fqarray,float
- values of the function f at quadtaure points. 
- gqarray,float
- values of the function g at quadtaure points. 
- alphafloat
- corresponding to singulairty, which also a paramter of Jacobi polynomial, alpha > -1 
- degreeint
- degree of Jacobi polynomial 
 - Returns#- hx: float
- Value of left convolution performed from 0 to x1. 
 - Note#- x1 in [0,1], where x1 is the upper terminal of the integral defined as, - h(x1) := int_{0}^{x1} (x1-t)^alpha f(x1-t) g(t) dt. 
 - right_convolue_at_x(fq, gq, degree, beta=0)#
- Computes the right convolution at x1, defined as, h(x) := int_{x1}^{1} (t-x1)^alpha f(t-x1) g(t) dt. - Parameters#- x1float
- lower terminal of the integral from x1 to 1, x1 in [0,1]. 
- fqarray,float
- values of the function f at quadtaure points. 
- gqarray,float
- values of the function g at quadtaure points. 
- betafloat
- corresponding to singulairty, which also a paramter of Jacobi polynomial, beta > -1 
- degreeint
- degree of Jacobi polynomial 
 - Returns#- hx: float
- Value of left convolution performed from 0 to x1. 
 - Note#- x1 in [0,1], where x1 is the lower terminal of the integral defined as, - h(x1) := int_{x1}^{1} (t-x1)^alpha f(t-x1) g(t) dt. 
 - left_convolue(fq, gq, degree, alpha=0)#
- Computes the left convolution at x1, defined as, h(x1) := int_{0}^{x1} (x1-t)^alpha f(x1-t) g(t) dt; for every x1 in x. - Parameters#- xfloat, array
- A 1D array of points, as upper terminal of the integral from 0 to x, x in [0,1]. Note, the convolution is compted at supplied x 
- fqarray,float
- values of the function f at quadtaure points in the invertal [0, b], 0 < b <= 1 
- gqarray,float
- values of the function g at quadtaure points in the invertal [0, b], 0 < b <= 1 
- alphafloat
- corresponding to singulairty, which also a paramter of Jacobi polynomial, alpha > -1 
- degreeint
- degree of Jacobi polynomial 
 - Returns#- V: array, float
- Value of left convolution performed from 0 to x1, for every x1 in x.