misc module#

Created on Sat Aug 17 14:12:41 2024

@author: Pavan Pranjivan Mehta

class misc.constant#

Bases: object

Some popular / useful constants

factorial()#

Computes factorial, n!

Parameters#

n : int

Returns#

n!: int, float

factorial of n

gamma_function()#

Computes Gamma (x), Euler Gamma function

Parameters#

xfloat

x > 0

Returns#

G: float

Gamma of (x)

binomial_coefficient(k)#

Computes Binomial Coeffcient (n k) = n! / k! (n-k)!

Parameters#

n : int

k : int

Returns#

B: int, float

B = n! / k! (n-k)!

jacobi_constant(beta, degree)#

Computes Jacobi Constant, asscoaited with Jacobi Polynomials of nth - degree as a result of orthogonality

Parameters#

alphafloat

Paramter of Jacobi polynomial, alpha > -1

betafloat

Paramter of Jacobi polynomial, beta > -1

degreeint

degree of Jacobi polynomial

Returns#

C: float

Jacobi Orthogonality Constant

beta_function(z2)#

Computes Beta function B(z1, z1) = Gamma (z1) * Gamma(z2) / Gamma (z1 + Z2), where, Gamma is the Euler-Gamma function

Parameters#

z1 : float

z2 : float

Returns#

B: float

B(z1, z1) = Gamma (z1) * Gamma(z2) / Gamma (z1 + Z2)

pochhammer(n)#

Computes the Pochammer symbol defined as,

(beta + 1)_n := 1, if n = 0

(beta + 1)_n := Product_i^n (beta + i), i = {1, 2, …, n}

Parameters#

beta : float

n : int

Returns#

B: float

value of the pochehammer

conv_othro_Qn_xk(n, k)#

Computes convolution orthogonality constant of Q-poly and x^k, with weight (1 - x)^lpha

Parameters#

alphafloat

alpha > -1

n : int

k : int

Returns#

C: float

value of the convolution orthogonality constant

Reference#

Allaway, W. R. (1989). Convolution Orthogonality and the Jacobi Polynominals. Canadian Mathematical Bulletin, 32(3), 298-308.

conv_othro_Qn_Qm(n, m)#

Computes convolution orthogonality constant of Q-poly of n and m, degree, with weight (1 - x)^lpha

Parameters#

alphafloat

alpha > -1

n : int

m : int

Returns#

C: float

value of the convolution orthogonality constant

Reference#

Allaway, W. R. (1989). Convolution Orthogonality and the Jacobi Polynominals. Canadian Mathematical Bulletin, 32(3), 298-308.

conv_jacobi_Pm_Pn(n)#

Computes convolution orthogonality constant of Jacobi Polynomial of n and m, degree, with weight (1 - x)^lpha

Parameters#

alphafloat

alpha > -1

nint

degree of Jacobi polynomial.

Returns#

C: float

value of the convolution orthogonality constant

Notes#

Untested

convolution_othro_Qn_Qm(m)#

Computes convolution orthogonality constant of Q-poly of n and m, degree, Q = P(2x -y / y)

Parameters#

n : int

m : int

Returns#

C: float

value of the convolution orthogonality constant

Reference#

Mehta P.P. and Rozza, G. (2024)