misc module#
Created on Sat Aug 17 14:12:41 2024
@author: Pavan Pranjivan Mehta
- class misc.constant#
- Bases: - object- Some popular / useful constants - gamma_function()#
- Computes Gamma (x), Euler Gamma function - Parameters#- xfloat
- x > 0 
 - Returns#- G: float
- Gamma of (x) 
 
 - binomial_coefficient(k)#
- Computes Binomial Coeffcient (n k) = n! / k! (n-k)! - Parameters#- n : int - k : int - Returns#- B: int, float
- B = n! / k! (n-k)! 
 
 - jacobi_constant(beta, degree)#
- Computes Jacobi Constant, asscoaited with Jacobi Polynomials of nth - degree as a result of orthogonality - Parameters#- alphafloat
- Paramter of Jacobi polynomial, alpha > -1 
- betafloat
- Paramter of Jacobi polynomial, beta > -1 
- degreeint
- degree of Jacobi polynomial 
 - Returns#- C: float
- Jacobi Orthogonality Constant 
 
 - beta_function(z2)#
- Computes Beta function B(z1, z1) = Gamma (z1) * Gamma(z2) / Gamma (z1 + Z2), where, Gamma is the Euler-Gamma function - Parameters#- z1 : float - z2 : float - Returns#- B: float
- B(z1, z1) = Gamma (z1) * Gamma(z2) / Gamma (z1 + Z2) 
 
 - pochhammer(n)#
- Computes the Pochammer symbol defined as, - (beta + 1)_n := 1, if n = 0 - (beta + 1)_n := Product_i^n (beta + i), i = {1, 2, …, n} - Parameters#- beta : float - n : int - Returns#- B: float
- value of the pochehammer 
 
 - conv_othro_Qn_xk(n, k)#
- Computes convolution orthogonality constant of Q-poly and x^k, with weight (1 - x)^lpha - Parameters#- alphafloat
- alpha > -1 
 - n : int - k : int - Returns#- C: float
- value of the convolution orthogonality constant 
 - Reference#- Allaway, W. R. (1989). Convolution Orthogonality and the Jacobi Polynominals. Canadian Mathematical Bulletin, 32(3), 298-308. 
 - conv_othro_Qn_Qm(n, m)#
- Computes convolution orthogonality constant of Q-poly of n and m, degree, with weight (1 - x)^lpha - Parameters#- alphafloat
- alpha > -1 
 - n : int - m : int - Returns#- C: float
- value of the convolution orthogonality constant 
 - Reference#- Allaway, W. R. (1989). Convolution Orthogonality and the Jacobi Polynominals. Canadian Mathematical Bulletin, 32(3), 298-308.