stiffness_matrix2D module#
Created on Sun Sep 3 16:57:29 2023
@author: Pavan Pranjivan Mehta
- class stiffness_matrix2D.stiffness_matrix2D#
Bases:
object
Computes stiffness matrix in 2 dimensions
Uses the trick,
K2 = K1 M1 + M1 K1, wherw K1 and M1 are 1D stiffness and mass matrix Credits for the formula : Prof. Luca Heltai, SISSA MathLab, Trieste, Italy
- legendre(min_degree=1, h=1e-06)#
Computes stiffness matrix Legendre Polynomials in [-1,1] of dim = (k^2 x k^2), where k = (max_degree - min_degree)
Parameters#
- min_degreeint
min degree of the polynomial, default = 1
- max_degreeint
max degree of the polynomial
Returns#
2D Stiffness martix Legendre polynomials within the interval [-1,1] x [-1,1]
- M: numpy array
2D Matrix of dim = (k^2 x k^2), where k = (max_degree - min_degree) of Legengre Polynomials
- homogenous_legendre(min_degree=0, h=1e-06)#
Computes 2D Stiffness matrix for Homogenous basis function using Legendre Polynomials in [-1,1] x [-1,1] of dim = (k^2 x k^2), where k = (max_degree - min_degree)
Parameters#
- min_degreeint
min degree of the polynomial, default = 0
- max_degreeint
max degree of the polynomial
Returns#
2D Stiffness martix of homogenous basis using Legendre polynomials within the interval [-1,1]
- M: numpy array
2D Matrix of dim = (k^2 x k^2), where k = (max_degree - min_degree) of Polynomials
- homogenous_shift_legendre(min_degree=0, h=1e-06)#
Computes 2D Stiffness matrix Homogenous basis function using Shifted Legendre Polynomials in [0,1] x [0,1] of dim = (k^2 x k^2), where k = (max_degree - min_degree)
Parameters#
- min_degreeint
min degree of the polynomial, default = 0
- max_degreeint
max max_degree of the polynomial
Returns#
2D Stiffness martix of homogenous basis using shifted Legendre polynomials within the interval [0,1]
- M: numpy array
2D Matrix of dim = (k^2 x k^2), where k = (max_degree - min_degree) of shifted Legengre Polynomials
- class stiffness_matrix2D.test#
Bases:
object
- homogenous_legendre(min_degree=0)#
- runge()#
- funx()#
- funy()#
- func(y)#
- der2funcX()#
- der2funcY()#
- laplacian_homogenous_legendre(min_degree=0)#
Solves for Laplacian using Homogenous basis function using Legendre Polynomials in [-1,1]
phi_{k} = L_{k+2} - L_{k}, where L_{k} is k-th order Legendre Polynomial
- homogenous_legendre_proj_err()#
- laplacian_homogenous_shift_legendre(min_degree=0)#
Solves for Laplacian using Homogenous basis function using Shifted Legendre Polynomials in [0,1]
phi_{k} = L_{k+2} - L_{k}, where L_{k} is k-th order Legendre Polynomial
- homogenous_shift_legendre_proj_err()#
- proj_err()#