mass_matrix module#
Created on Thu Aug 31 16:29:13 2023
@author: Pavan Pranjivan Mehta
- class mass_matrix.mass_matrix#
Bases:
object
Computes mass matrix
- legendre()#
Computes Mass matrix Legendre Polynomials in [-1,1] of dim = (k) x (k), where k-1 is highest degree
Parameters#
- degreeint
degree of the polynomial
Returns#
Mass martix Legendre polynomials within the interval [-1,1]
- M: numpy array
Matrix of dim (k) X (k), where k-1 is the highest degree of Legengre Polynomials
- shift_legendre()#
Computes Mass matrix Shifted Legendre Polynomials in [0,1] of dim = (k) x (k), where k-1 is highest degree
Parameters#
- degreeint
degree of the polynomial
Returns#
Mass martix Legendre polynomials within the interval [0,1]
- M: numpy array
Matrix of dim (k) X (k), where k-1 is the highest degree of Shifted Legengre Polynomials
- jacobi(beta, degree)#
Computes Mass matrix Jacobi Polynomials in [-1,1] of dim = (k) x (k), where k-1 is highest degree
Parameters#
- alphafloat
paramter assocated with Jacobi Polynomials, alpha > -1
- betafloat
paramter assocated with Jacobi Polynomials, beta > -1
- degreeint
degree of the polynomial
Returns#
Mass martix Jacobi polynomials within the interval [-1,1]
- M: numpy array
Matrix of dim (k) X (k), where k-1 is the highest degree of Jacobi Polynomials
- shift_jacobi(beta, degree)#
Computes Mass matrix Shifted Jacobi Polynomials in [0,1] of dim = (k) x (k), where k-1 is highest degree
Parameters#
- alphafloat
paramter assocated with Jacobi Polynomials, alpha > -1
- betafloat
paramter assocated with Jacobi Polynomials, beta > -1
- degreeint
degree of the polynomial
Returns#
Mass martix Jacobi polynomials within the interval [0,1]
- M: numpy array
Matrix of dim (k) X (k), where k-1 is the highest degree of Shifted Jacobi Polynomials
- Q_poly(beta, degree)#
Computes Mass matrix Q Polynomials in [0,1] of dim = (k) x (k), where k-1 is highest degree
Parameters#
- alphafloat
paramter assocated with Q Polynomials, alpha > -1
- betafloat
paramter assocated with Q Polynomials, beta > -1
- degreeint
degree of the polynomial
Returns#
Mass martix Q polynomials within the interval [0,1]
- M: numpy array
Matrix of dim (k) X (k), where k-1 is the highest degree of Q Polynomials
Notes#
Q (x) := P_n (1-2x), where P_n is a Jacobi polynomial with paramter, alpha and beta.
- shift_arbitary_jacobi(b, alpha, beta, degree)#
Computes Mass matrix Shifted (arbitary) Jacobi Polynomials in [a,b] of dim = (k) x (k), where k-1 is highest degree
Parameters#
- afloat
min of interval [a, b]
- bfloat
max of interval [a, b]
- alphafloat
paramter assocated with Jacobi Polynomials, alpha > -1
- betafloat
paramter assocated with Jacobi Polynomials, beta > -1
- degreeint
degree of the polynomial
Returns#
Mass martix Jacobi polynomials within the interval [0,1]
- M: numpy array
Matrix of dim (k) X (k), where k-1 is the highest degree of Shifted Jacobi Polynomials
- homogenous_legendre()#
Computes Mass matrix Homogenous basis function using Legendre Polynomials in [-1,1] of dim = (k-1) x (k-1), where k-1 is highest degree of homogeous legendre Polynomials
Parameters#
- degreeint
max degree of the polynomial
Returns#
Mass martix Legendre polynomials within the interval [-1,1]
- M: numpy array
Matrix of dim (k) X (k), where k-1 is the highest degree of homogeous legendre Polynomials
- homogenous_shift_legendre()#
Computes Mass matrix Homogenous basis function using Shifted Legendre Polynomials in [0,1] of dim = (k-1) x (k-1), where k-1 is highest degree of homogeous shifted legendre Polynomials
Parameters#
- degreeint
max degree of the polynomial
Returns#
Mass martix Shifted Legendre polynomials within the interval [0,1]
- M: numpy array
Matrix of dim (k) X (k), where k-1 is the highest degree of homogeous shifted legendre Polynomials
- class mass_matrix.test#
Bases:
object
- legendre()#
- shift_legendre()#
- homogenous_legendre()#
- runge()#
- runge_arb(b, x)#
- func()#
- legendre_proj()#
- legendre_proj_err()#
- shift_legendre_proj()#
- Q_proj(beta, degree)#
- shift_jacob_arb_proj(b, alpha, beta, degree)#
- shift_legendre_proj_err()#
- shift_jacobi_project_coeff(beta, degree)#
Comuptes the coeffients for L2 projection over shifted Jacobi basis
- homogenous_legendre_proj()#
- homogenous_legendre_proj_err()#
- homogenous_shift_legendre_proj()#
- homogenous_shift_legendre_proj_err()#
- proj_err()#