quad module#
Created on Thu Aug 31 13:56:13 2023
@author: Pavan Pranjivan Mehta
- class quad.quad_pts_weights#
- Bases: - object- Computes Quadrature Points and weights - legendre()#
- Qudrature points and weights of Legendre Polynomials in [-1,1] - Parameters#- degreeint
- degree of the polynomial 
 - Returns#- Qudrature points and weights of Legendre polynomials within the interval [-1,1] - q: float
- quadrature points 
- w: float
- weights 
 
 - jacobi(beta, degree)#
- Qudrature points and weights of Jacobi Polynomials, P_n^{alpha, beta} in [-1,1]; alpha, beta > -1. - Parameters#- alphafloat
- Paramter for Jacobi polynomial, alpha > -1 
- betafloat
- Paramter for Jacobi polynomial, beta > -1 
- degreeint
- degree of the polynomial 
 - Returns#- Qudrature points and weights of Jacobi polynomials within the interval [-1,1] - q: float
- quadrature points 
- w: float
- weights 
 
 - shift_legendre()#
- Shifted Qudrature points and weights of Legendre Polynomials in [0,1] - Parameters#- degreeint
- degree of the polynomial 
 - Returns#- Qudrature points and weights of Legendre polynomials within the interval [0,1] - q: float
- quadrature points 
- w: float
- weights 
 
 - shift_jacobi(beta, degree)#
- Shifted Qudrature points and weights of Jacobi Polynomials in [0,1] - Parameters#- alphafloat
- Paramter for Jacobi polynomial, lpha > -1 
- betafloat
- Paramter for Jacobi polynomial, eta > -1 
- degreeint
- degree of the polynomial 
 - Returns#- Qudrature points and weights of Jacobi polynomials within the interval [0,1] - q: float
- quadrature points 
- w: float
- weights 
 
 - Q_poly(beta, degree)#
- Qudrature points and weights of Q Polynomials in [0,1] - Q := P_n (1 - 2x) - Parameters#- alphafloat
- Paramter for Jacobi polynomial, lpha > -1 
- betafloat
- Paramter for Jacobi polynomial, eta > -1 
- degreeint
- degree of the polynomial 
 - Returns#- Qudrature points and weights of Q polynomials within the interval [0,1] - q: float
- quadrature points 
- w: float
- weights 
 
 - shift_arbitary_legendre(b, degree)#
- Shifted Qudrature points in arbitary domain and weights of Legendre Polynomials in [a,b] - Parameters#- afloat
- min of interval [a, b] 
- bfloat
- max of interval [a, b] 
- degreeint
- degree of the polynomial 
 - Returns#- Qudrature points and weights in arbitary domain of Legendre polynomials within the interval [a,b] - q: float
- quadrature points 
- w: float
- weights 
 
 - shift_arbitary_jacobi(b, alpha, beta, degree)#
- Shifted Qudrature points in arbitary domain and weights of Jacobi Polynomials in [a,b] - Parameters#- afloat
- min of interval [a, b] 
- bfloat
- max of interval [a, b] 
- alphafloat
- Parameter for Jacobi polynomial, lpha > -1 
- betafloat
- Parameter for Jacobi polynomial, eta > -1 
- degreeint
- degree of the polynomial 
 - Returns#- Qudrature points and weights in arbitary domain of Jacobi polynomials within the interval [a,b] - q: float
- quadrature points 
- w: float
- weights 
 
 - homogenous_legendre()#
- Qudrature points and weights of Homogenous basis using Legendre Polynomials in [-1,1] - phi_i = l_{k+2} - l_{k}, where l is legendre polynomial in [-1,1] of degree k - Parameters#- degreeint
- degree of the polynomial 
 - Returns#- Qudrature points and weights of Homogenous basis using Legendre polynomials within the interval [-1,1] - q2: float
- quadrature points associted with degree+2 Legendre Polynomial 
- w2: float
- weights associted with degree+2 Legendre Polynomial 
- q0: float
- quadrature points associted with degree Legendre Polynomial 
- w0: float
- weights associted with degree Legendre Polynomial 
 
 - homogenous_shift_legendre()#
- Qudrature points and weights of Homogenous basis using Shited Legendre Polynomials in [0,1] - phi_i = l_{k+2} - l_{k}, where l is shifted legendre polynomial in [0,1] of degree k - Parameters#- degreeint
- degree of the polynomial 
 - Returns#- Qudrature points and weights of Homogenous basis using Legendre polynomials within the interval [0,1] - q2: float
- quadrature points associted with degree+2 shifted Legendre Polynomial 
- q0: float
- quadrature points associted with degree shifted Legendre Polynomial 
- w2: float
- weights associted with degree+2 shifted Legendre Polynomial 
- w0: float
- weights associted with degree shifted Legendre Polynomial 
 
 
- class quad.gauss_quad#
- Bases: - object- Computes Gauss qundrature - legendre(degree)#
- Gauss Legendre Quadrature in [-1,1] - Parameters#- f: float array
- f(x) at quadrature points 
- degreeint
- degree of the polynomial 
 - Returns#- Value of Gauss Legendre Quadrature within the interval [-1,1] 
 - shift_legendre(degree)#
- Gauss Legendre Quadrature (shifted) in [0,1] - Parameters#- f: float array
- f(x) at quadrature points 
- degreeint
- degree of the polynomial 
 - Returns#- Value of Shifted Gauss Legendre Quadrature within the interval [0,1] 
 - shift_jacobi(alpha, beta, degree)#
- Gauss Jacobi Quadrature (shifted) in [0,1] - Parameters#- f: float array
- f(x) at quadrature points 
- alphafloat
- Parameter for Jacobi polynomial, lpha > -1 
- betafloat
- Parameter for Jacobi polynomial, eta > -1 
- degreeint
- degree of the polynomial 
 - Returns#- Value of Shifted Gauss Jacobi Quadrature within the interval [0,1] 
 - Q_poly(alpha, beta, degree)#
- Gauss Q-poly Quadrature in [0,1] - Parameters#- f: float array
- f(x) at quadrature points 
- alphafloat
- Parameter for Q polynomial, lpha > -1 
- betafloat
- Parameter for Q polynomial, eta > -1 
- degreeint
- degree of the polynomial 
 - Returns#- Value of Gauss Q-poly Quadrature within the interval [0,1] 
 - shift_arbitary_legendre(a, b, degree)#
- Gauss Legendre Quadrature (shifted arbitary) in [a,b] - Parameters#- f: float array
- f(x) at quadrature points 
 - a : min of interval [a, b] - b : max of interval [a, b] - degreeint
- degree of the polynomial 
 - Returns#- Value of Shifted arbitary Gauss Legendre Quadrature within the interval [a,b] 
 - shift_arbitary_jacobi(a, b, alpha, beta, degree)#
- Gauss Jacobi Quadrature (shifted arbitary) in [a,b] - Parameters#- f: float array
- f(x) at quadrature points 
 - a : min of interval [a, b] - b : max of interval [a, b] - alphafloat
- Parameter for Jacobi polynomial, lpha > -1 
- betafloat
- Parameter for Jacobi polynomial, eta > -1 
- degreeint
- degree of the polynomial 
 - Returns#- Value of Shifted arbitary Gauss Jacobi Quadrature within the interval [a,b] 
 - homogenous_legendre(f0, degree)#
- Gauss Legendre Quadrature for homogenous in [-1,1] - phi_i = l_{k+2} - l_{k}, where l is legendre polynomial in [-1,1] of degree k - Parameters#- f2: float array
- f(x) at quadrature points with associted degree “k+2” legendre polynomials 
- f0: float array
- f(x) at quadrature points with associted degree “k” legendre polynomials 
- degreeint
- degree of the polynomial 
 - Returns#- Value of Gauss Legendre Quadrature for homogenous within the interval [-1,1] 
 - homogenous_shift_legendre(f0, degree)#
- Gauss Legendre Quadrature for homogenous in [0,1] - phi_i = l_{k+2} - l_{k}, where l is shifted legendre polynomial in [0,1] of degree k - Parameters#- f2: float array
- f(x) at quadrature points with associted degree “k+2” shifted legendre polynomials 
- f0: float array
- f(x) at quadrature points with associted degree “k” shifted legendre polynomials 
- degreeinf2 = np.sin(q2)
- f0 = np.sin(q0)t degree of the polynomial 
 - Returns#- Value of Gauss Legendre Quadrature for homogenous within the interval [0,1]