Sonin Kernel module#
Created on Mon Sep 2 13:56:04 2024
@author: ppranjiv
- class sonin_kernel.sonin#
- Bases: - object- Sonine Kernels of power series type
- k := h_{alpha} SUM a_n x^n and, kappa := h_{1-alpha} SUM b_n x^n, where, h_alpha = x^{alpha -1} / Gamma (alpha), Gamma is the Euler Gamma function 
 - Reference#- Luchko, Y. (2021) General Fractional Integrals and Derivatives with the Sonine Kernels. Mathematics - get_kappa_coeff(alpha)#
- Computes the coeffcient for the sonin kernel, kappa given, the coeffcients of kernel, k - Parameters#- aarray, float
- coefficients of kernel, k 
- alphafloat
- fractional order, 0 < alpha < 1 
 - Returns#- barray, float
- coefficients of kernel, kappa. same shape as k 
 - Note#- It uses the relationship between a and b as,
- a[0] b[0] = 1, for n = 1 - SUM_k^n Gamma(k+1-alpha) Gamma(alpha + n -k) a[n-k] b[k] = 0, for n > 1 
 - Reference#- Luchko, Y. (2021) General Fractional Integrals and Derivatives with the Sonine Kernels. Mathematics 
 - verify_sonin(b1, k1, k2, alpha, degree)#
- Verifies the sonin contdion, for a kernel
- k = a1 x^{k1+alpha-1} / Gamma (alpha), kappa = b1 x^{k2-alpha} / Gamma (1-alpha) 
 - Parameters#- a1float
- coefficients of kernel, k 
- b1float
- coefficients of kernel, kappa 
- k1int
- parameter for power for kernel, k, which appears as x^{k1+alpha-1} 
- k2int
- parameter for power for kernel, kappa, which appears as x^{k2-alpha} 
- alphafloat
- fractional order, 0 < alpha < 1 
- degreeint
- Gauss Jacobi Quadrature degree 
 - Returns#- xarray, float
- x in [0, 1], the points where sonin condition is verified 
- sonine: array, float
- the values of convolution of (k * kappa)(x), at x 
 
 - verify_condition(b, alpha, degree)#
- Verifies the sonin contion, for a kernel
- k = SUM_k^n a_k x^{k+alpha-1} / Gamma (alpha), kappa = SUM_n^n b_k x^{k2-alpha} / Gamma (1-alpha) 
 - Parameters#- aarray, float
- coefficients of kernel, k 
- barray, float
- coefficients of kernel, kappa 
- alphafloat
- fractional order, 0 < alpha < 1 
- degreeint
- Gauss Jacobi Quadrature degree 
 - Returns#- xarray, float
- x in [0, 1], the points where sonin condition is verified 
- sonine: array, float
- the values of convolution of (k * kappa)(x), at x 
 - Note#- uses sonin.verify_sonin for computations