projection module#
Created on Sat Aug 17 10:36:51 2024
@author: Pavan Pranjivan Mehta
- class projection.coefficient#
- Bases: - object- legendre(degree)#
- Comuptes the coeffients for L2 projection over Legendre basis over [-1, 1] - Parameters#- farray, float
- values of f(x) at quadrature points. 
- degreeint
- highest degree of the polynomial 
 - Returns#- a: numpy array
- coefficient for Galkerkin projection over Legendre Basis 
- q: numpy array
- quadrature points required for inner product computation via Gauss quadrature. 
 
 - shift_legendre(degree)#
- Comuptes the coeffients for L2 projection over shifted Legendre basis over [0,1] - Parameters#- farray, float
- values of f(x) at quadrature points. 
- degreeint
- highest degree of the polynomial 
 - Returns#- a: numpy array
- coefficient for Galkerkin projection over Shited Legendre Basis over [0,1] 
- q: numpy array
- quadrature points required for inner product computation via Gauss quadrature. 
 
 - jacobi(alpha, beta, degree)#
- Comuptes the coeffients for L2 projection over Jacobi basis over [-1,1] - Parameters#- farray, float
- values of f(x) at quadrature points. 
- alphafloat
- Paramter of Jacobi polynomials, alpha > -1 
- betafloat
- Paramter of Jacobi polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- a: numpy array
- coefficient for Galkerkin projection over Jacobi Basis over [-1,1] 
- q: numpy array
- quadrature points required for inner product computation via Gauss quadrature. 
 
 - shift_jacobi(alpha, beta, degree)#
- Comuptes the coeffients for L2 projection over shifted Jacobi basis over [0,1] - Parameters#- farray, float
- values of f(x) at quadrature points. 
- alphafloat
- Paramter of Jacobi polynomials, alpha > -1 
- betafloat
- Paramter of Jacobi polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- a: numpy array
- coefficient for Galkerkin projection over Shited Jacobi Basis over [0,1] 
- q: numpy array
- quadrature points required for inner product computation via Gauss quadrature. 
 
 - shift_arbitary_jacobi(a, b, alpha, beta, degree)#
- Comuptes the coeffients for L2 projection over shifted (arbitary) Jacobi basis on interval [a, b] - Parameters#- farray, float
- values of f(x) at quadrature points. 
- afloat
- min. of interval [a, b] 
- bfloat
- max. of interval [a, b] 
- alphafloat
- Paramter of Jacobi polynomials, alpha > -1 
- betafloat
- Paramter of Jacobi polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- a1: numpy array
- coefficient for Galkerkin projection over Shited Jacobi Basis over [a,b] 
- q: numpy array
- quadrature points required for inner product computation via Gauss quadrature. 
 - Note#- For the interval [a, b], we have -1 <= a < b <= 1. 
 - Q_poly(alpha, beta, degree)#
- Comuptes the coeffients for L2 projection over Q basis over the inverval [0,1] - Parameters#- farray, float
- values of f(x) at quadrature points. 
- alphafloat
- Paramter of Jacobi polynomials, alpha > -1 
- betafloat
- Paramter of Jacobi polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- a: numpy array
- coefficient for Galkerkin projection over Q Basis over [0,1] 
- q: numpy array
- quadrature points required for inner product computation via Gauss quadrature. 
 - Note#- Q_n ^{alpha, beta} (x) := P_n^{alpha, beta} (1 - 2x) 
 
- class projection.expansion#
- Bases: - object- Reconstruct the function as, - f(x) = SUM_i^N a_i P_i (x),
- where, a_i is the coefficents and P_i Basis function (ith-order polynomial) 
 - Input : “a_i” coefficients obatined via Galerkin projection - legendre(x, degree)#
- Reconstruct the function, using Legendre basis for x in [-1, 1] by supplying the coefficients, a_i - Parameters#- aarray, float
- coefficients obatined via Galerkin projection 
- xarray, float
- x in [-1, 1] 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 
 - shift_legendre(x, degree)#
- Reconstruct the function, using Shited Legendre basis for x in [0, 1] by supplying the coefficients, a_i - Parameters#- aarray, float
- coefficients obatined via Galerkin projection 
- xarray, float
- x in [0, 1] 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 
 - jacobi(x, alpha, beta, degree)#
- Reconstruct the function, using Jacobi basis for x in [-1, 1] by supplying the coefficients, a_i - Parameters#- aarray, float
- coefficients obatined via Galerkin projection 
- xarray, float
- x in [-1, 1] 
- alphafloat
- Paramter of Jacobi polynomials, alpha > -1 
- betafloat
- Paramter of Jacobi polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 
 - shift_jacobi(x, alpha, beta, degree)#
- Reconstruct the function, using Shited Jacobi basis for x in [0, 1] by supplying the coefficients, a_i - Parameters#- aarray, float
- coefficients obatined via Galerkin projection 
- xarray, float
- x in [0, 1] 
- alphafloat
- Paramter of Jacobi polynomials, alpha > -1 
- betafloat
- Paramter of Jacobi polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 
 - shift_arbitary_jacobi(x, a, b, alpha, beta, degree)#
- Reconstruct the function, using Shited Jacobi basis for x in [a, b] by supplying the coefficients, a1_i - Parameters#- a1array, float
- coefficients obatined via Galerkin projection 
- xarray, float
- x in [a, b] 
- afloat
- min. of the interval [a, b] 
- bfloat
- max. of the interval [a, b] 
- alphafloat
- Paramter of Jacobi polynomials, alpha > -1 
- betafloat
- Paramter of Jacobi polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 
 - Q_poly(x, alpha, beta, degree)#
- Reconstruct the function, using Q basis for x in [0, 1] by supplying the coefficients, a_i - Parameters#- aarray, float
- coefficients obatined via Galerkin projection 
- xarray, float
- x in [0, 1] 
- alphafloat
- Paramter of Q polynomials, alpha > -1 
- betafloat
- Paramter of Q polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 - Notes#- The Q basis function are defines as, - Q_n^{alpha, beta} (x) := P_n^{alpha, beta} (1-2x) 
 
- class projection.galerkin#
- Bases: - object- Performs the Projection as, - f(x) = SUM_i^N a_i P_i (x),
- where, a_i is the coefficents and P_i Basis function (ith-order polynomial) 
 - Input : f(x) at quadature points. - legendre(x, degree)#
- Reconstruct the function, using Legendre basis for x in [-1, 1] by supplying the function values at quadrature points - Parameters#- fqarray, float
- f(q), function values at quadrature points, q. 
- xarray, float
- x in [-1, 1] 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 
 - shift_legendre(x, degree)#
- Reconstruct the function, using shifted Legendre basis for x in [0, 1] by supplying the function values at quadrature points - Parameters#- fqarray, float
- f(q), function values at quadrature points, q. 
- xarray, float
- x in [0, 1] 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 
 - jacobi(x, alpha, beta, degree)#
- Reconstruct the function, using Jacobi basis for x in [-1, 1] by supplying the function values at quadrature points - Parameters#- fqarray, float
- f(q), function values at quadrature points, q. 
- xarray, float
- x in [-1, 1] 
- alphafloat
- Paramter of Q polynomials, alpha > -1 
- betafloat
- Paramter of Q polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 
 - shift_jacobi(x, alpha, beta, degree)#
- Reconstruct the function, using shifted Jacobi basis for x in [0, 1] by supplying the function values at quadrature points - Parameters#- fqarray, float
- f(q), function values at quadrature points, q. 
- xarray, float
- x in [0, 1] 
- alphafloat
- Paramter of Q polynomials, alpha > -1 
- betafloat
- Paramter of Q polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 
 - shift_arbitary_jacobi(x, a, b, alpha, beta, degree)#
- Reconstruct the function, using shifted Jacobi basis for x in [a, b] by supplying the function values at quadrature points - Parameters#- fqarray, float
- f(q), function values at quadrature points, q. 
- xarray, float
- x in [0, 1] 
- afloat
- min. of the interval [a, b] 
- bfloat
- max. of the interval [a, b] 
- alphafloat
- Paramter of Q polynomials, alpha > -1 
- betafloat
- Paramter of Q polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 
 - Q_poly(x, alpha, beta, degree)#
- Reconstruct the function, using Q basis for x in [0, 1] by supplying the function values at quadrature points - Parameters#- fqarray, float
- f(q), function values at quadrature points, q. 
- xarray, float
- x in [0, 1] 
- alphafloat
- Paramter of Q polynomials, alpha > -1 
- betafloat
- Paramter of Q polynomials, beta > -1 
- degreeint
- highest degree of the polynomial 
 - Returns#- f: numpy array
- values of f(x) at supplied x 
 - Notes#- The Q basis function are defines as, - Q_n^{alpha, beta} (x) := P_n^{alpha, beta} (1-2x)