stiffness_matrix module#
Created on Fri Sep 1 16:26:35 2023
@author: Pavan Pranjivan Mehta
- class stiffness_matrix.stiffness_matrix#
- Bases: - object- Computes stiffness matrix in 1 dimension - constrect the space V = span {Pn}, where Pn is Poly of degree n, such that : min_degree <= n <= mas_degree; deafult, min_degree = 1. - Note#- Note that, n = 0 is a singular matrix - legendre(min_degree=1, h=1e-06)#
- Computes stiffness matrix Legendre Polynomials in [-1,1] of dim = (k x k), where k = (max_degree - min_degree) - Parameters#- min_degreeint
- min degree of the polynomial, default = 1 
- max_degreeint
- max degree of the polynomial 
 - Returns#- Stiffness martix Legendre polynomials within the interval [-1,1] - M: numpy array
- Matrix of dim = (k x k), where k = (max_degree - min_degree) of Legengre Polynomials 
 
 - homogenous_legendre(min_degree=0, h=1e-06)#
- Computes Stiffness matrix Homogenous basis function using Legendre Polynomials in [-1,1] of dim = (k x k), where k = (max_degree - min_degree) - Parameters#- min_degreeint
- min degree of the polynomial, default = 0 
- max_degreeint
- max degree of the polynomial 
 - Returns#- Stiffness martix of homogenous basis using Legendre polynomials within the interval [-1,1] - M: numpy array
- Matrix of dim = (k x k), where k = (max_degree - min_degree) of Legengre Polynomials 
 
 - homogenous_shift_legendre(min_degree=0, h=1e-06)#
- Computes Stiffness matrix Homogenous basis function using Shifted Legendre Polynomials in [0,1] of dim = (k x k), where k = (max_degree - min_degree) - Parameters#- min_degreeint
- min degree of the polynomial, default = 0 
- max_degreeint
- max max_degree of the polynomial 
 - Returns#- Stiffness martix of homogenous basis using shifted Legendre polynomials within the interval [0,1] - M: numpy array
- Matrix of dim = (k x k), where k = (max_degree - min_degree) of shifted Legengre Polynomials 
 
 
- class stiffness_matrix.test#
- Bases: - object- legendre(min_degree=1)#
 - homogenous_legendre(min_degree=0)#
 - runge()#
 - func()#
 - der2func()#
 - laplacian_legendre(min_degree=1)#
- Solves for Laplacian using Legendre Polynomials in [-1,1] - TODO#- bcboundary conditions
- Implement bc, since Legendre Poly does not satisfy homogenous bc 
 
 - legendre_proj_err()#
 - laplacian_homogenous_legendre(min_degree=0)#
- Solves for Laplacian using Homogenous basis function using Legendre Polynomials in [-1,1] - phi_{k} = L_{k+2} - L_{k}, where L_{k} is k-th order Legendre Polynomial 
 - homogenous_legendre_proj_err()#
 - laplacian_homogenous_shift_legendre(min_degree=0)#
- Solves for Laplacian using Homogenous basis function using Shifted Legendre Polynomials in [0,1] - phi_{k} = L_{k+2} - L_{k}, where L_{k} is k-th order Legendre Polynomial 
 - homogenous_shift_legendre_proj_err()#
 - proj_err()#