stiffness_matrix module#
Created on Fri Sep 1 16:26:35 2023
@author: Pavan Pranjivan Mehta
- class stiffness_matrix.stiffness_matrix#
Bases:
object
Computes stiffness matrix in 1 dimension
constrect the space V = span {Pn}, where Pn is Poly of degree n, such that : min_degree <= n <= mas_degree; deafult, min_degree = 1.
Note#
Note that, n = 0 is a singular matrix
- legendre(min_degree=1, h=1e-06)#
Computes stiffness matrix Legendre Polynomials in [-1,1] of dim = (k x k), where k = (max_degree - min_degree)
Parameters#
- min_degreeint
min degree of the polynomial, default = 1
- max_degreeint
max degree of the polynomial
Returns#
Stiffness martix Legendre polynomials within the interval [-1,1]
- M: numpy array
Matrix of dim = (k x k), where k = (max_degree - min_degree) of Legengre Polynomials
- homogenous_legendre(min_degree=0, h=1e-06)#
Computes Stiffness matrix Homogenous basis function using Legendre Polynomials in [-1,1] of dim = (k x k), where k = (max_degree - min_degree)
Parameters#
- min_degreeint
min degree of the polynomial, default = 0
- max_degreeint
max degree of the polynomial
Returns#
Stiffness martix of homogenous basis using Legendre polynomials within the interval [-1,1]
- M: numpy array
Matrix of dim = (k x k), where k = (max_degree - min_degree) of Legengre Polynomials
- homogenous_shift_legendre(min_degree=0, h=1e-06)#
Computes Stiffness matrix Homogenous basis function using Shifted Legendre Polynomials in [0,1] of dim = (k x k), where k = (max_degree - min_degree)
Parameters#
- min_degreeint
min degree of the polynomial, default = 0
- max_degreeint
max max_degree of the polynomial
Returns#
Stiffness martix of homogenous basis using shifted Legendre polynomials within the interval [0,1]
- M: numpy array
Matrix of dim = (k x k), where k = (max_degree - min_degree) of shifted Legengre Polynomials
- class stiffness_matrix.test#
Bases:
object
- legendre(min_degree=1)#
- homogenous_legendre(min_degree=0)#
- runge()#
- func()#
- der2func()#
- laplacian_legendre(min_degree=1)#
Solves for Laplacian using Legendre Polynomials in [-1,1]
TODO#
- bcboundary conditions
Implement bc, since Legendre Poly does not satisfy homogenous bc
- legendre_proj_err()#
- laplacian_homogenous_legendre(min_degree=0)#
Solves for Laplacian using Homogenous basis function using Legendre Polynomials in [-1,1]
phi_{k} = L_{k+2} - L_{k}, where L_{k} is k-th order Legendre Polynomial
- homogenous_legendre_proj_err()#
- laplacian_homogenous_shift_legendre(min_degree=0)#
Solves for Laplacian using Homogenous basis function using Shifted Legendre Polynomials in [0,1]
phi_{k} = L_{k+2} - L_{k}, where L_{k} is k-th order Legendre Polynomial
- homogenous_shift_legendre_proj_err()#
- proj_err()#